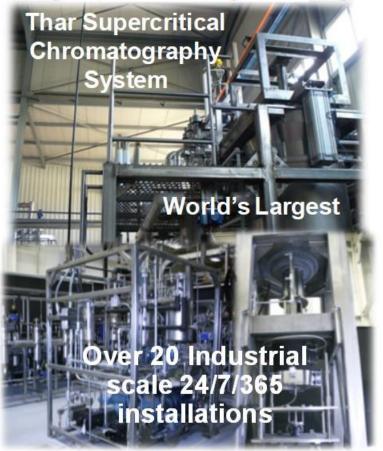


Opportunities & Challenges for sub-Megawatt & Modular Supercritical Cycles

October 19, 2017

Lalit Chordia, PhD, Marc Portnoff

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com


Outline

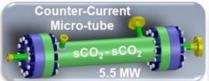
- Background Thar
- Sub 1 MWe Distributed sCO₂ Power Systems
- Future R&D
- Where Industry is Heading

The Thar Brand - Over 25 years of Innovation with "Green" Supercritical Fluid Technologies

Design and commercialization of supercritical systems & major components

Over 5,000 scientific instruments installed

Direct Exchange, R744 (CO₂) Geothermal Heating & Cooling



sCO₂ Brayton Power Cycle Development

COMPACT Heat Exchangers for sCO₂
Power Cycles

Tested at KAPL

3D Printed, Inconel 718, sCO₂-sCO₂ Recuperator

Thar Timeline (cont.)

Primary Heater for Sunshot One MWe sCO₂Test Loop

Design – Construct – Operate sCO₂ Heat Exchanger Test Loop

Performance Confirmed

2014

ATharProcess

Design – Construct – Operate Largest GMP sCO₂ Extraction System in USA

2016

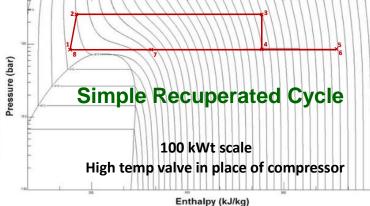
Oxy Combustion Test Facility
Design – Construct – Operate
Demonstrate auto-combustion

Pharmaceuticals sold to

2017

UNITED STATES PATENT AND TRADEMARK OFFICE

Expands into Liquid Chromatography


sCO₂ Brayton Power Cycle Heat Exchanger Test Facility

sCO₂ Test Loop Experience

- Operational Performance
- Startup and Shutdown
- Transient Analysis
- Component Performance
 - Pumps
 - Filters
 - Valves
 - Sensors
 - Material properties

Reconfigurable Test Loop

- Pressures to 255 bar
- Temperature to 700°C
- sCO₂ flow to 10 kg/min

Work supported by US DOE NETL under DE-FE0024012 & DE-FE0025348

What Drives Distributed sCO₂ Power Systems?

Performance: High Efficiency, LCE

Operating Cost

- Higher efficiency leads to lower operating cost
- Use of natural gas results in low operating cost

Capital Cost:

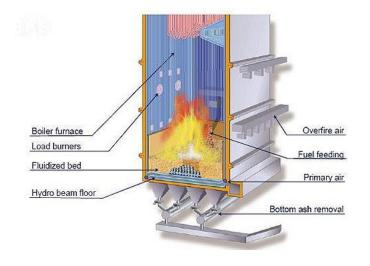
- Market size: ~25,000 units/year
- Expect capital cost to be <\$2000/kW, closer to \$1500/kW</p>

Size:

- > sCO₂ systems are small because of:
 - Compact HX, expanders and pumps
 - 1 MW system designed to easily fit into a 40' container
- Smaller Package allows for easy installation

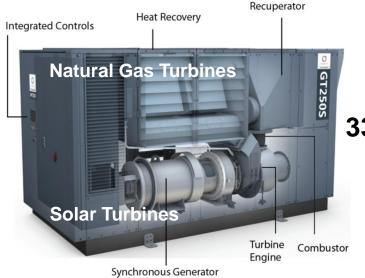
What Drives Distributed sCO₂ Power Systems? (cont.)

- Emissions option:
 - > Oxy-combustion leads little or no emission
- Air Cooled option: No water requirement
- Fuel Flexibility: Natural Gas, Biomass, Coal
- **Design** to look and feel like a diesel gen-set

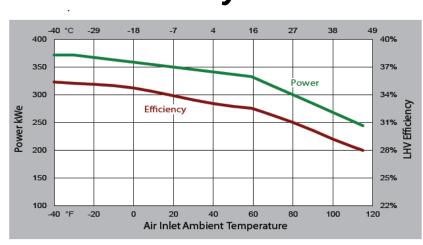

Market Drivers for Distributed Power Systems (< 5 MWe)

Market Drivers

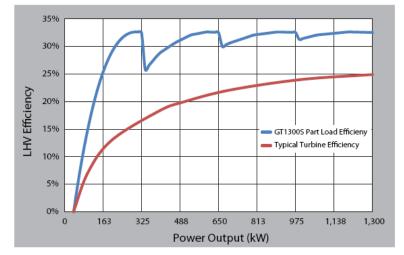
- Deregulation
- Grid Security
- Fuel Availability
- Transmission Cost
- Renewables
- Emissions
- Community Issues



sCO₂ System Focus: High Efficiency, Modular, Compact Size, Light Weight, Competitively Priced



Efficiency and power change with ambient temperature and system load

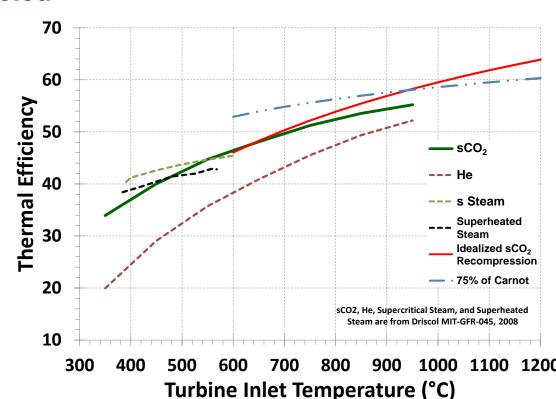


333 kWe

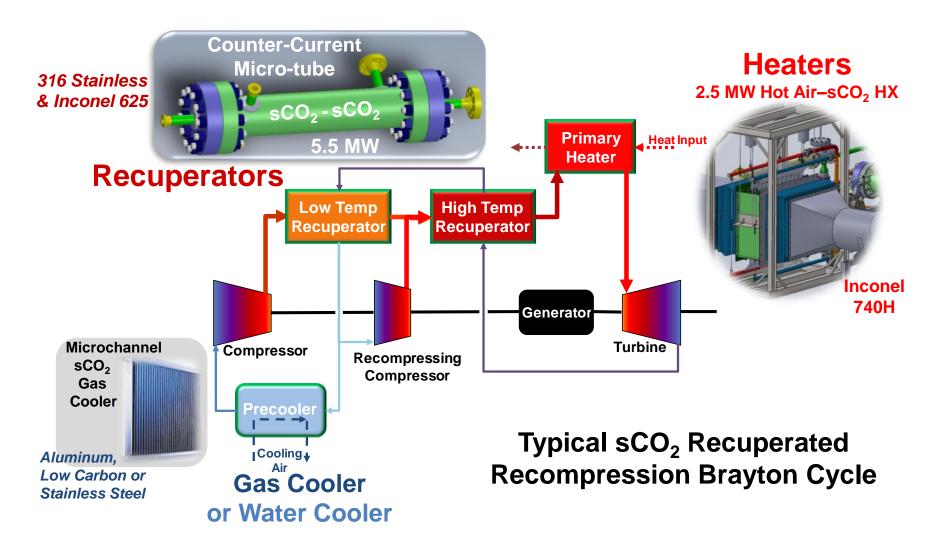
1333 kWe

Comparison < 1 MWe Distributed Power Systems

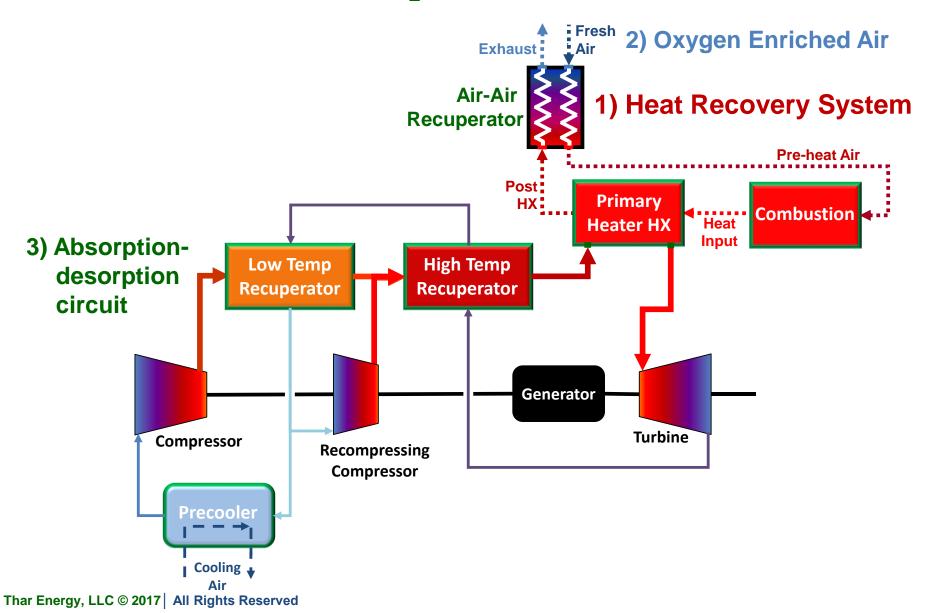
Category	Diesel	Natural Gas	sCO2 Cycle
Efficiency (%)	35 - 37	37 - 39	60
Size (ft3/MW)	4,000 - 6,500	5,800 - 8,000	~3000
Weight (tons/MW)	12.5 - 18	18 - 21	~10
Cost (\$/kW)	500	700	~2,000
Commercial	Yes	Yes	Future Design


Volume production and economies of scale are necessary to lower cost so sCO₂ Power Systems can be competitive.

sCO₂ Power Cycle Efficiency

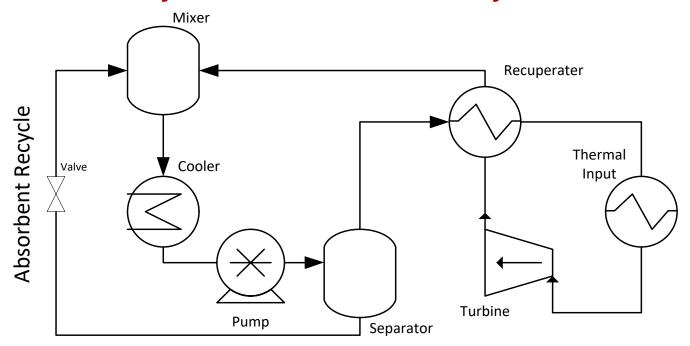

Options to improve cycle efficiency

- Turbine design
- Turbine inlet temperature and pressure
- Recuperator design
- Gas Cooler air or water cooled
- Fuel source
- Indirect cycle:
 - Oxygen enriched air
- Cycles designed to reduce compression work



Heat Exchangers are key to improving sCO₂ power cycle efficiency & system costs - sCO₂ Recuperators, Heater HXs & Precooler HXs

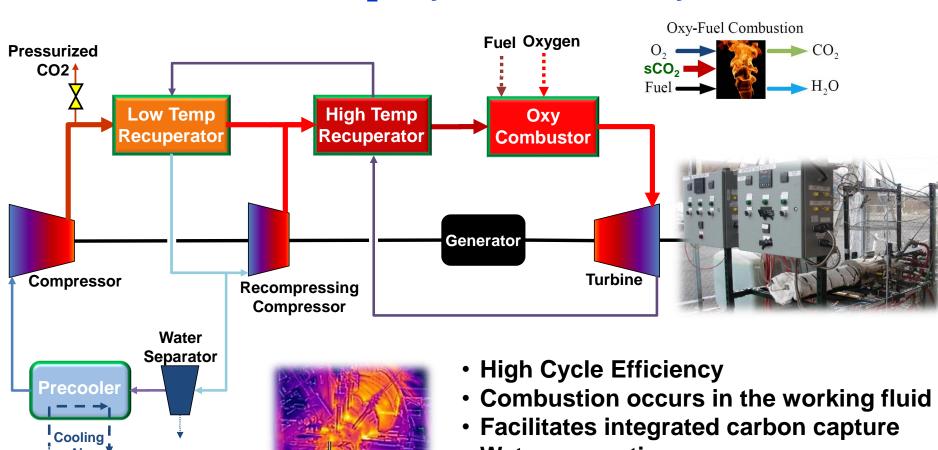
Options to Improve sCO₂ Brayton Power Cycle Efficiency



Options to Improve sCO₂ Brayton Power Cycle Efficiency

Absorption/Desorption sCO₂ Brayton Power Cycle

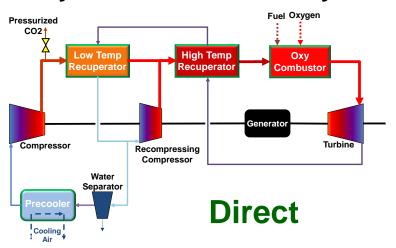
- Reduce compression work by 40% to 65%
- Increase cycle thermal efficiencies by 5-10%



New Pump Designs

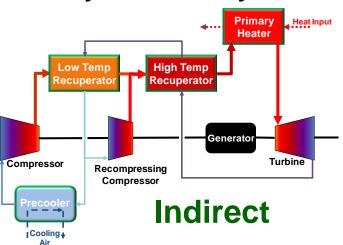
- Compact and lighter weight
- Improve performance two orders of magnitude in same footprint

Direct sCO₂ Oxy Combustion Cycle


Demonstrated auto-combustion

- Water separation
- Compatible with dry cooling techniques
- Requires compact and efficient oxygen separation

< 1 MWe sCO₂ Distributed Power Systems


Oxy Combustion Power Cycle

Thermal Generation integrated with Electricity Generation

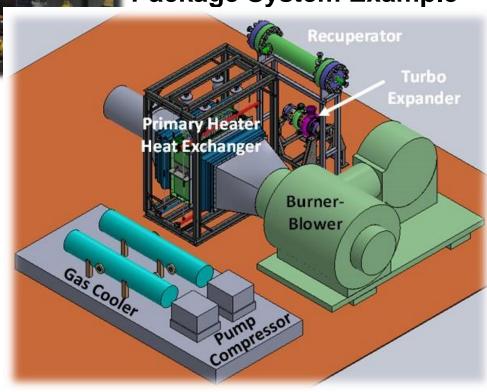
- Higher temperatures, >800°C allows for greater efficiencies
- Collect CO₂: Sell, Use as coolant, or Sequester
- Higher material costs
- o Requires oxygen source
- Serious tech gaps

Brayton Power Cycle

Thermal Generation separate from Electricity Generation

- Temperatures in the range of 450-700°C
- Lower temperatures allows the use of commercially available materials
- Fuel Flexibility: Natural Gas, Coal, Biomass
- Unable to collect CO₂

1 MWe sCO₂ Brayton Power System



For <1 MWe systems, rotating expanders are a problem.
Consider reciprocating expanders.

Package System Example

Major Components

- 2 Recuperators HX
- 1 Primary Heater
- 1 Condenser HX
- 2 Compressors
- 1 Expander

Future R&D

Pressurized Oxygen Generation:

Membrane (high compression cost), Cryo (not cost efficient for small system),
 High pressure high temp electrolysis

Expanders:

- Rotating expanders are not efficient for small scale systems
 - High rpms require gear reduction, reducing efficiency and increasing cost
- Simple highly efficient reciprocating expanders

Reciprocating Expanders/compressors:

- o Integrating the expander and the pump/compressor
- Improved seals to reduce size and cost

Controls

 Understanding system behavior, so controls can be developed for normal operation and startup and shutdown

Advanced Manufacturing: 3D Printing of Components

- Ability to print long sections
- Need to use less expensive metal powders

Where Industry is Heading

- sCO₂ is better served by focusing on:
 - Small distributed power generation systems
 - > For large commercial buildings, small industries, grid stability
 - Lower operating cost will be a big driver for this market
 - Direct oxy-combustion using natural gas
 - Byproduct can generate additional income by converting high pressure CO₂ into other products such as plastics.
 - Indirect cycle has a huge advantage due to the feedstock
 - Market size: Diesel Generators to exceed \$20B in 2020
 - Growing at 5.4% every year
 - Key Players: Caterpillar, Cummins, Generac, Kohler
 - Fastest growing segment: Asia

Questions and Discussions!!!

Thank You

Contact Information:
Marc Portnoff
Thar Energy, LLC
150 Gamma Drive
Pittsburgh, PA 15238
Marc.Portnoff@TharEnergyLLC.com

